On the characterization of the regions of feasible trajectories in the workspace of parallel manipulators
نویسندگان
چکیده
It was shown recently that parallel manipulators with several inverse kinematic solutions have the ability to avoid parallel singularities [Chablat 1998a] and self-collisions [Chablat 1998b] by choosing appropriate joint configurations for the legs. In effect, depending on the joint configurations of the legs, a given configuration of the end-effector may or may not be free of singularity and collision. Characterization of the collision/singularity-free workspace is useful but may be insufficient since two configurations can be accessible without collisions nor singularities but it may not exist a feasible trajectory between them. The goal of this paper is to define the maximal regions of the workspace where it is possible to execute trajectories. Two different families of regions are defined : 1. those regions where the end-effector can move between any set of points, and 2. the regions where any continuous path can be tracked. These regions are characterized from the notion of aspects and free-aspects recently defined for parallel manipulators [Chablat 1998b]. The construction of these regions is achieved by enrichment techniques and using an extension of the octree structures to spaces of dimension greater than three. Illustrative examples show the interest of this study to the optimization of trajectories and the design of parallel manipulators.
منابع مشابه
Interval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملTenth World Congress on the Theory of Machines and Mechanisms
It was shown recently that parallel manipulators with several inverse kinematic solutions have the ability to avoid parallel singularities [Chablat 1998a] and self-collisions [Chablat 1998b] by choosing appropriate joint configurations for the legs. In effect, depending on the joint configurations of the legs, a given configuration of the end-effector may or may not be free of singularity and c...
متن کاملDexterous Workspace Shape and Size Optimization of Tricept Parallel Manipulator
This work intends to deal with the optimal kinematic synthesis problem of Tricept parallel manipulator. Observing that cuboid workspaces are desirable for most machines, we use the concept of effective inscribed cuboid workspace, which reflects requirements on the workspace shape, volume and quality, simultaneously. The effectiveness of a workspace is characterized by the dexterity of the manip...
متن کاملAn Efficient Algorithm for Workspace Generation of Delta Robot
Dimensional synthesis of a parallel robot may be the initial stage of its design process, which is usually carried out based on a required workspace. Since optimization of the links lengths of the robot for the workspace is usually done, the workspace computation process must be run numerous times. Hence, importance of the efficiency of the algorithm and the CPU time of the workspace computatio...
متن کاملRegions of Feasible Point-to-Point Trajectories in the Cartesian Workspace of Fully-Parallel Manipulators
The goal of this paper is to define the n-connected regions in the Cartesian workspace of fully-parallel manipulators, i.e. the maximal regions where it is possible to execute pointto-point motions. The manipulators considered in this study may have multiple direct and inverse kinematic solutions. The N-connected regions are characterized by projection, onto the Cartesian workspace, of the conn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0910.5559 شماره
صفحات -
تاریخ انتشار 2009